Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.037
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610409

RESUMO

Electrical impedance spectroscopy (EIS) has been proposed as a promising noninvasive method to differentiate healthy thyroid from parathyroid tissues during thyroidectomy. However, previously reported similarities in the in vivo measured spectra of these tissues during a pilot study suggest that this separation may not be straightforward. We utilise computational modelling as a method to elucidate the distinguishing characteristics in the EIS signal and explore the features of the tissue that contribute to the observed electrical behaviour. Firstly, multiscale finite element models (or 'virtual tissue constructs') of thyroid and parathyroid tissues were developed and verified against in vivo tissue measurements. A global sensitivity analysis was performed to investigate the impact of physiological micro-, meso- and macroscale tissue morphological features of both tissue types on the computed macroscale EIS spectra and explore the separability of the two tissue types. Our results suggest that the presence of a surface fascia layer could obstruct tissue differentiation, but an analysis of the separability of simulated spectra without the surface fascia layer suggests that differentiation of the two tissue types should be possible if this layer is completely removed by the surgeon. Comprehensive in vivo measurements are required to fully determine the potential for EIS as a method in distinguishing between thyroid and parathyroid tissues.


Assuntos
Espectroscopia Dielétrica , Glândula Tireoide , Glândula Tireoide/cirurgia , Projetos Piloto , Simulação por Computador , Eletricidade
2.
ACS Appl Bio Mater ; 7(3): 2000-2011, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38447196

RESUMO

Cell culture models of endothelial and epithelial barriers typically use porous membrane inserts (e.g., Transwell inserts) as a permeable substrate on which barrier cells are grown, often in coculture with other cell types on the opposite side of the membrane. Current methods to characterize barrier function in porous membrane inserts can disrupt the barrier or provide bulk measurements that cannot isolate barrier cell resistance alone. Electrical cell-substrate impedance sensing (ECIS) addresses these limitations, but its implementation on porous membrane inserts has been limited by costly manufacturing, low sensitivity, and lack of validation for barrier assessment. Here, we present porous membrane ECIS (PM-ECIS), a cost-effective method to adapt ECIS technology to porous substrate-based in vitro models. We demonstrate high fidelity patterning of electrodes on porous membranes that can be incorporated into well plates of a variety of sizes with excellent cell biocompatibility with mono- and coculture set ups. PM-ECIS provided sensitive, real-time measurement of isolated changes in endothelial cell barrier impedance with cell growth and barrier disruption. Barrier function characterized by PM-ECIS resistance correlated well with permeability coefficients obtained from simultaneous molecular tracer permeability assays performed on the same cultures, validating the device. Integration of ECIS into conventional porous cell culture inserts provides a versatile, sensitive, and automated alternative to current methods to measure barrier function in vitro, including molecular tracer assays and transepithelial/endothelial electrical resistance.


Assuntos
Espectroscopia Dielétrica , Células Endoteliais , Porosidade , Células Endoteliais/metabolismo , Técnicas de Cocultura , Eletrodos
3.
Mikrochim Acta ; 191(4): 182, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451377

RESUMO

The rapid fabrication is described of binary electrocatalyst based on a highly porous metal-organic framework with zirconium metal core (Zr-MOF) decorated over the graphitic carbon nitride (g-C3N4) nanosheets via facile ultrasonication method. It is used for the robust determination of antipsychotic drug chlorpromazine (CLP) from environmental samples. The electrochemical behaviour of 2D Zr-MOF@g-C3N4 was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The crystalline and porous nature of the composite was characterized by XRD and SEM analysis. The functional groups and surface characteristics were investigated by FT-IR, Raman and XPS. The major electrochemical properties of the Zr-MOF@g-C3N4 composite towards CLP detection were analyzed by CV, chronocoulometric (CC), chronoamperometric (CA) and differential pulse voltammetry (DPV) techniques. The composite exhibits a low detection limit (LOD) of 2.45 nM with a linear range of 0.02 to 2.99 µM and attractive sensitivity for CLP. The sensor system shows higher selectivity towards the possible interferences of CLP drug and exhibits better repeatability and stability. Finally, the fabricated sensor system shows a high recovery range varying from 96.2 to 98.9% towards the real samples. The proposed electrochemical probe might be a promising alternative to the prevailing diagnostic tools for the detection of CLP.


Assuntos
Antipsicóticos , Clorpromazina , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia Dielétrica , Eletrodos
4.
Biosensors (Basel) ; 14(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38392020

RESUMO

Here, we present the results of our the electrochemical aptasensing strategy for retinol binding protein-4 (RBP-4) detection based on a thiolated aptamer against RBP-4 and 6-mercaptohexanol (MCH) directly immobilized on a gold electrode surface. The most important parameters affecting the magnitude of the analytical signal generated were optimized: (i) the presence of magnesium ions in the immobilization and measurement buffer, (ii) the concentration of aptamer in the immobilization solution and (iii) its folding procedure. In this work, a systematic assessment of the electrochemical parameters related to the optimization of the sensing layer of the aptasensor was carried out (electron transfer coefficients (α), electron transfer rate constants (k0) and surface coverage of the thiolated aptamer probe (ΓApt)). Then, under the optimized conditions, the analytical response towards RBP-4 protein, in the presence of an Fe(CN)63-/4- redox couple in the supporting solution was assessed. The proposed electrochemical strategy allowed for RBP-4 detection in the concentration range between 100 and 1000 ng/mL with a limit of detection equal to 44 ng/mL based on electrochemical impedance spectroscopy (EIS). The specificity studies against other diabetes biomarkers, including vaspin and adiponectin, proved the selectivity of the proposed platform. These preliminary results will be used in the next step to miniaturize and test the sensor in real samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Espectroscopia Dielétrica/métodos , Oxirredução , Ouro/química , Eletrodos , Proteínas de Ligação ao Retinol , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química
5.
Nano Lett ; 24(7): 2234-2241, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320294

RESUMO

Negative capacitance at low frequencies for spiking neurons was first demonstrated in 1941 (K. S. Cole) by using extracellular electrodes. The phenomenon subsequently was explained by using the Hodgkin-Huxley model and is due to the activity of voltage-gated potassium ion channels. We show that Escherichia coli (E. coli) biofilms exhibit significant stable negative capacitances at low frequencies when they experience a small DC bias voltage in electrical impedance spectroscopy experiments. Using a frequency domain Hodgkin-Huxley model, we characterize the conditions for the emergence of this feature and demonstrate that the negative capacitance exists only in biofilms containing living cells. Furthermore, we establish the importance of the voltage-gated potassium ion channel, Kch, using knock-down mutants. The experiments provide further evidence for voltage-gated ion channels in E. coli and a new, low-cost method to probe biofilm electrophysiology, e.g., to understand the efficacy of antibiotics. We expect that the majority of bacterial biofilms will demonstrate negative capacitances.


Assuntos
Espectroscopia Dielétrica , Escherichia coli , Neurônios/fisiologia , Bactérias , Biofilmes
6.
Sensors (Basel) ; 24(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38339574

RESUMO

This paper presents the development of a miniaturized sensor device for selective detection of pathogens, specifically Influenza A Influenza virus, as an enveloped virus is relatively vulnerable to damaging environmental impacts. In consideration of environmental factors such as humidity and temperature, this particular pathogen proves to be an ideal choice for our study. It falls into the category of pathogens that pose greater challenges due to their susceptibility. An impedance biosensor was integrated into an existing platform and effectively separated and detected high concentrations of airborne pathogens. Bio-functionalized hydrogel-based detectors were utilized to analyze virus-containing particles. The sensor device demonstrated high sensitivity and specificity when exposed to varying concentrations of Influenza A virus ranging from 0.5 to 50 µg/mL. The sensitivity of the device for a 0.5 µg/mL analyte concentration was measured to be 695 Ω· mL/µg. Integration of this pathogen detector into a compact-design air quality monitoring device could foster the advancement of personal exposure monitoring applications. The proposed sensor device offers a promising approach for real-time pathogen detection in complex environmental settings.


Assuntos
Poluição do Ar , Técnicas Biossensoriais , Espectroscopia Dielétrica , Impedância Elétrica
7.
Eur J Pediatr ; 183(5): 2251-2256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407589

RESUMO

The purpose of this study is to evaluate the intracellular and extracellular volume before and after anesthesia in order to ascertain their variations and determine the potential utility of this information in optimizing intraoperative fluid administration practices. A bioimpedance spectroscopy device (body composition monitor, BCM) was used to measure total body fluid volume, extracellular volume, and intracellular volume. BCM measurements were performed before and after general anesthesia in unselected healthy children and adolescents visiting the Pediatric Institute of Southern Switzerland for low-risk surgical procedures hydrated with an isotonic solution. In 100 children and adolescents aged 7.0 (4.8-11) years (median and interquartile range), the average total body water increased perioperatively with a delta value of 182 (0-383) mL/m2 from pre- to postoperatively, as well as the extracellular water content, which had a similar increase with a delta value of 169 (19-307) mL/m2. The changes in total body water and extracellular water content significantly correlated with the amount of fluids administered. The intracellular water content did not significantly change.   Conclusion: Intraoperative administration of isotonic solutions results in a significant fluid accumulation in low-risk schoolchildren during general anesthesia. The results suggest that children without major health problems undergoing short procedures do not need any perioperative intravenous fluid therapy, because they are allowed to take clear fluids up to 1 h prior anesthesia. In future studies, the use of BCM measurements has the potential to be valuable in guiding intraoperative fluid therapy. What is Known: • Most children who undergo common surgical interventions or investigations requiring anesthesia are nowadays hydrated at a rate of 1700 mL/m2/day with an isotonic solution. • The use bioimpedance spectroscopy for the assessment of fluid status in healthy children has already been successfully validated. • The bioimpedance spectroscopy is already currently widely used in various nephrological settings to calculate fluid overload and determine patient's optimal fluid status. What is New: • Routine intraoperative fluid administration results in a significant fluid accumulation during general anesthesia in low-risk surgical procedures. • This observation might be relevant for children and adolescents with conditions predisposing to fluid retention. • In future studies, the use of BCM measurements has the potential to be valuable in guiding intraoperative fluid therapy.


Assuntos
Anestesia Geral , Composição Corporal , Hidratação , Humanos , Criança , Projetos Piloto , Masculino , Feminino , Anestesia Geral/métodos , Adolescente , Pré-Escolar , Hidratação/métodos , Espectroscopia Dielétrica/métodos , Água Corporal , Soluções Isotônicas/administração & dosagem , Impedância Elétrica , Suíça
8.
ACS Sens ; 9(3): 1391-1400, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38364864

RESUMO

Achieving reliable detection of trace levels of NO2 gas is essential for environmental monitoring and protection of human health protection. Herein, a thin-film gas sensor based on branched WO3/W18O49 heterostructures was fabricated. The optimized WO3/W18O49 sensor exhibited outstanding NO2 sensing properties with an ultrahigh response value (1038) and low detection limit (10 ppb) at 50 °C. Such excellent sensing performance could be ascribed to the synergistic effect of accelerated charge transfer and increased active sites, which is confirmed by electrochemical impedance spectroscopy and temperature-programmed desorption characterization. The sensor exhibited an excellent detection ability to NO2 under different air quality conditions. This work provides an effective strategy for constructing WO3/W18O49 heterostructures for developing NO2 gas sensors with an excellent sensing performance.


Assuntos
Espectroscopia Dielétrica , Dióxido de Nitrogênio , Humanos , Domínio Catalítico , Monitoramento Ambiental
9.
Biosens Bioelectron ; 252: 116041, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401280

RESUMO

A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridization. The technique uses electrical impedance spectroscopy and gold nanoparticles functionalized with single-stranded DNA complementary to an mRNA of interest to provide reliable, real-time, and quantifiable data on gene expression in live cells. The system was validated by demonstrating specific detection of the uidA mRNA, which codes for the ß-glucuronidase (GUS) enzyme, in Solanum lycopersicum MsK8 cells. Gold nanoparticles were functionalized with single-stranded DNA oligonucleotides consisting of either a sequence complementary to uidA mRNA or an arbitrary sequence. The DNA-functionalized gold nanoparticles were mixed with cell suspensions, allowing the gold nanoparticles to penetrate into the cells. The impedance spectra of suspensions of cells with gold nanoparticles inserted within them were then studied. In suspensions of uidA-expressing cells and gold nanoparticles functionalized with the complementary single-stranded DNA oligonucleotide, the impedance magnitude in the frequency range of interest was significantly higher (146 %) in comparison to all other controls. Due to its highly selective nature, the methodology has the potential to be used as a precision agricultural sensing system for accurate and real-time detection of markers of stress, viral infection, disease, and normal physiological activities.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , DNA de Cadeia Simples/genética , Espectroscopia Dielétrica , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , DNA/genética , RNA Mensageiro , Expressão Gênica , Impedância Elétrica
10.
Water Sci Technol ; 89(4): 904-914, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38423608

RESUMO

In this study, polyoxometalates (POMs) as a core-modifying material was used to fabricate the nanofiltration (NF) membrane on the polyvinylidene fluoride (PVDF) microfiltration membrane substrate via a novel interfacial polymerization (IP) method. The formation mechanism of the POMs-modified composite membrane was proposed. The separation and antifouling properties were further investigated. After cross-linking with POMs through the new IP reaction, the modified composite membrane showed improved hydrophilicity, water flux, and salt rejection. In the humic acid fouling experiment, the POMs-modified membrane exhibited the best antifouling performance, with a flux recovery rate of up to 91.3%. Electrochemical impedance spectroscopy was further used to investigate the antifouling performance of the membranes. Nyquist and Bode plots of the POMs-modified membranes showed no significant change before and after fouling compared to the PVDF membrane substrate, indicating reduced fouling attachment on the modified membrane, which was consistent with the fouling index and flux variation observed during the fouling experiment. Our findings provide a simple and valuable route for fabricating POMs-functionalized NF membranes with desirable separation and antifouling performance.


Assuntos
Ânions , Incrustação Biológica , Polieletrólitos , Polivinil , Incrustação Biológica/prevenção & controle , Espectroscopia Dielétrica , Polímeros de Fluorcarboneto , Membranas Artificiais
11.
Biosens Bioelectron ; 250: 116042, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266619

RESUMO

Three-dimensional (3D) in vitro cell culture models serve as valuable tools for accurately replicating cellular microenvironments found in vivo. While cell culture technologies are rapidly advancing, the availability of non-invasive, real-time, and label-free analysis methods for 3D cultures remains limited. To meet the demand for higher-throughput drug screening, there is a demanding need for analytical methods that can operate in parallel. Microelectrode systems in combination with microcavity arrays (MCAs), offer the capability of spatially resolved electrochemical impedance analysis and field potential monitoring of 3D cultures. However, the fabrication and handling of small-scale MCAs have been labour-intensive, limiting their broader application. To overcome this challenge, we have established a process for creating MCAs in a standard 96-well plate format using high-precision selective laser etching. In addition, to automate and ensure the accurate placement of 3D cultures on the MCA, we have designed and characterized a plug-in tool using SLA-3D-printing. To characterize our new 96-well plate MCA-based platform, we conducted parallel analyses of human melanoma 3D cultures and monitored the effect of cisplatin in real-time by impedance spectroscopy. In the following we demonstrate the capabilities of the MCA approach by analysing contraction rates of human pluripotent stem cell-derived cardiomyocyte aggregates in response to cardioactive compounds. In summary, our MCA system significantly expands the possibilities for label-free analysis of 3D cell and tissue cultures, offering an order of magnitude higher parallelization capacity than previous devices. This advancement greatly enhances its applicability in real-world settings, such as drug development or clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Humanos , Miócitos Cardíacos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células em Três Dimensões , Espectroscopia Dielétrica
12.
Biosens Bioelectron ; 250: 116049, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290381

RESUMO

Contemporary electrochemical impedance spectroscopy (EIS)-based biosensors face limitations in their applicability for in vivo measurements, primarily due to the necessity of using a redox probe capable of undergoing oxidation and reduction reactions in solution. Although previous investigations have demonstrated the effectiveness of EIS-based biosensors in detecting various target analytes using potassium ferricyanide as a redox probe, its unsuitability for blood or serum measurements, attributed to its inherent toxicity, poses a significant challenge. In response to this challenge, our study adopted a unique approach, focusing on the use of ingestible materials, by exploring naturally occurring substances within the body, with a specific emphasis on pyrroloquinoline quinone (PQQ). Following an assessment of PQQ's electrochemical attributes, we conducted a comprehensive series of EIS measurements. This involved the thorough characterization of the sensor's evolution, starting from the bare electrode and progressing to the immobilization of antibodies. The sensor's performance was then evaluated through the quantification of insulin concentrations ranging from 1 pM to 100 nM. A single frequency was identified for insulin measurements, offering a pathway for potential in vivo applications by combining PQQ as a redox probe with EIS measurements. This innovative approach holds promise for advancing the field of in vivo biosensing based on the EIS method.


Assuntos
Técnicas Biossensoriais , Cofator PQQ , Técnicas Biossensoriais/métodos , Insulina , Espectroscopia Dielétrica , Imunoensaio , Oxirredução , Eletrodos
13.
Analyst ; 149(4): 1081-1089, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204338

RESUMO

Gastrointestinal bleeding (GIB) is a serious medical condition, which requires immediate attention to establish the cause of the bleeding. Here, we present the development of a miniaturised electrochemical impedance spectroscopy (EIS) device for the detection of GIB. The device performs EIS measurements up to 100 kHz. Following the development of an immunosensor for haemoglobin (Hb) on screen printed electrodes, the EIS device was used for detecting Hb as an early indication of bleeding. The sensor was able to detect Hb in a redox solution in a linear range between 5 µg mL-1 and 60 µg mL-1, with a limit of detection of 13.3 µg mL-1. It was also possible to detect Hb in simulated intestinal fluid, without the need for a redox solution, within a range of 10 µg mL-1 to 10 mg mL-1 with a limit of detection of 2.31 mg mL-1. The miniature EIS device developed in this work is inexpensive, with an estimated cost per unit of £30, and has shown a comparable performance to existing commercial tools, demonstrating its potential to be used in the future as an ingestible sensor to detect GIB. All these measurements were carried out in a purpose built flow cell with supporting hardware electronics outside the cell. Integration of the hardware and the sensing electrodes was demonstrated in pill form. This pill after integration sampling fluidics has potential to be used in detecting gastrointestinal bleeding.


Assuntos
Técnicas Biossensoriais , Hemoglobina Falciforme , Humanos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Espectroscopia Dielétrica , Hemorragia Gastrointestinal/induzido quimicamente , Hemorragia Gastrointestinal/diagnóstico , Eletrodos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Ouro/química
14.
Macromol Rapid Commun ; 45(8): e2300699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224144

RESUMO

Polymer dielectrics with high dielectric constant are urgently demanded for potential electrical and pulsed power applications. The design of polymers with side chains containing dipolar groups is considered an effective method for preparing materials with a high dielectric constant and low loss. This study synthesizes and comprehensively compare the dielectric properties of novel polyimides with side chains containing urea (BU-PI), carbamate (BC-PI), and sulfonyl (BS-PI) functional groups. The novel polyimides exhibit relatively high dielectric constant and low dielectric loss values due to the enhanced orientational polarization and suppressed dipole-dipole interactions of dipolar groups. In particular, BU-PI containing urea pendant groups presents the highest dielectric constant of 6.14 and reasonably low dielectric loss value of 0.0097. The strong γ transitions with low activation energies derived from dielectric spectroscopy measurements have been further evaluated to demonstrate the enhanced free rotational motion of urea pendant dipoles. In energy storage applications, BU-PI achieves a discharged energy density of 6.92 J cm-3 and a charge-discharge efficiency above 83% at 500 MV m-1. This study demonstrates that urea group, as dipolar pendant group, can provide polymers with better dielectric properties than the most commonly used sulfonyl groups.


Assuntos
Polímeros , Ureia , Polímeros/química , Ureia/química , Imidas/química , Estrutura Molecular , Carbamatos/química , Espectroscopia Dielétrica
15.
Mikrochim Acta ; 191(1): 72, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170245

RESUMO

Non-structural 1 (NS1) is a protein biomarker that can be found in blood in the early stages of dengue and related infections (Zika and Chikungunya). This study aims to develop a biosensor to selectively quantify NS1 using DNA aptamer co-immobilized on gold electrodes with 6-(ferrocenyl)hexanethiol (FCH) using electrochemical capacitive spectroscopy. This technique uses a redox probe (FCH) immobilized on the self-assembled monolayer to convert impedance into capacitance information. The developed platform was blocked with bovine serum albumin before NS1 exposure and the ratio between aptamers and FCH was optimized. The aptasensor was tested using commercial NS1 serotype 4 in phosphate-buffered saline and commercial undiluted human serum. Using the optimum applied potential provides high sensitivity (3 and 4 nF per decade) and low limit of detection (30.9 and 41.8 fg/mL) with a large linear range (10 pg to 1 µg/mL and 10 pg to 100 ng/mL, respectively). Both results exhibit a residual standard deviation value < 1%. The results suggested that this aptasensor was capable of detecting NS1 in the clinical range and can be applied to any other specific aptamer with FCH, opening the path for label-free miniaturized point-of-care devices with high sensitivity and specificity.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Dengue , Infecção por Zika virus , Zika virus , Humanos , Limite de Detecção , Aptâmeros de Nucleotídeos/química , Espectroscopia Dielétrica/métodos , Técnicas Biossensoriais/métodos , Dengue/diagnóstico
16.
Bioelectromagnetics ; 45(2): 58-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013630

RESUMO

Band 3 protein and glycophorin C are the two major integral proteins of the lipid membrane of human red blood cells (RBCs). They are attached from below to a network of elastic filamentous spectrin, the third major RBC membrane protein. The binding properties of the attachments to spectrin affect the shape and deformability of RBCs. We addressed band 3 and glycophorin C attachments to spectrin by measuring the strength of two recently discovered radiofrequency dielectric relaxations, ßsp (1.4 MHz) and γ1sp (9 MHz), that are observable as changes in the complex admittance of RBCs in medium. In medium at pH 5.2, and also in media with protic substances (formamide, methylformamide, or urea), the ßsp relaxation became inhibited that is attributable to detachment of glycophorin C from spectrin. In medium at pH 9.2, we observed inhibition of γ1sp relaxation attributable to detachment of band 3 from spectrin, as also was seen in media with aprotic substances difluoropyridine, dimethylsolfoxide, dimethylformamide, acetone, sodium tetrakis(4-fluorophenyl)borate), chlorpromazine, thioridazine and trifluopiperazine. The viscogenic cosolvents (glycerol, ethylene glycol, or i-erythritol) inhibited both the ßsp and γ1sp relaxations and significantly lowered their characteristic frequencies. Our observations indicate that the glycophorin C attachment to spectrin has nucleophilic centers whose saturation disconnects this attachment and inhibits the ßsp relaxation, whereas at band 3-spectrin attachment site, it is the saturation of electrophilic centers that weakens this attachment and inhibits the γ1sp relaxation.


Assuntos
Glicoforinas , Espectrina , Humanos , Espectrina/química , Espectrina/metabolismo , Espectrina/farmacologia , Glicoforinas/metabolismo , Glicoforinas/farmacologia , Ligação de Hidrogênio , Espectroscopia Dielétrica , Membrana Eritrocítica/metabolismo , Eritrócitos , Esqueleto/metabolismo , Lipídeos/farmacologia , Concentração de Íons de Hidrogênio
17.
Analyst ; 149(2): 269-289, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015145

RESUMO

Herein the development of cellular impedance biosensors, electrochemical impedance spectroscopy, and the general principles and terms associated with the cell-electrode interface is reviewed. This family of techniques provides quantitative and sensitive information into cell responses to stimuli in real-time with high temporal resolution. The applications of cell-based impedance biosensors as a readout in cell biology is illustrated with a diverse range of examples. The current state of the field, its limitations, the possible available solutions, and the potential benefits of developing biosensors are discussed.


Assuntos
Técnicas Biossensoriais , Impedância Elétrica , Técnicas Biossensoriais/métodos , Eletrodos , Espectroscopia Dielétrica/métodos , Técnicas Eletroquímicas
18.
Lymphat Res Biol ; 22(1): 43-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851985

RESUMO

Background: Bioimpedance spectroscopy (BIS) measurements are conventionally performed in supine position with a lead device attached to gel-backed electrodes, and more recently, with a stand-on device that uses fixed stainless-steel electrodes under the hands and feet. The aim of this study was to assess and compare BIS measurements made in supine, sitting, and standing positions using lead and stand-on impedance devices in participants with and without unilateral leg lymphedema. Materials and Methods: Participants with self-ascribed unilateral leg lymphedema (n = 24) and healthy controls (n = 71) were recruited using a cross-sectional study design. Triplicate BIS measurements were taken for each device in each position. Results: Impedance measurements with either device were reliable with coefficient of variation of 0.6% or lower. The magnitude of mean differences in absolute impedance values between devices were between 1% and 6% dependent on condition. L-Dex scores between the two devices were highly correlated (r = 0.82) and ∼70% of participants in the lymphedema group were classified as having lymphedema using the recommended cut-off with either device. There was no significant interleg difference of controls using the lead device; however, small, but significant differences (p = 0.0001) were found when using the stand-on device. Conclusion: The findings demonstrate that reliable impedance measurements of the legs can be made with either device in lying, sitting, or standing positions. However, data between the devices were not directly interchangeable. Although the risk of misidentification was small, reference ranges appropriate to the device and measurement position should be used when converting data to L-Dex scores.


Assuntos
Linfedema , Posicionamento do Paciente , Humanos , Estudos Transversais , Perna (Membro) , Análise Espectral , Linfedema/diagnóstico , Linfedema/etiologia , Impedância Elétrica , Espectroscopia Dielétrica/métodos
19.
Int J Pharm ; 649: 123630, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38040394

RESUMO

Viable cell density (VCD) and cell viability (CV) are key performance indicators of cell culture processes in biopharmaceutical production of biologics and vaccines. Traditional methods for monitoring VCD and CV involve offline cell counting assays that are both labor intensive and prone to high variability, resulting in sparse sampling and uncertainty in the obtained data. Process analytical technology (PAT) approaches offer a means to address these challenges. Specifically, in situ probe-based measurements of dielectric spectroscopy (also commonly known as capacitance) can characterize VCD and CV continuously in real time throughout an entire process, enabling robust process characterization. In this work, we propose in situ dielectric spectroscopy as a PAT tool for real time analysis of live-virus vaccine (LVV) production. Dielectric spectroscopy was collected across 25 discreet frequencies, offering a thorough evaluation of the proposed technology. Correlation of this PAT methodology to traditional offline cell counting assays was performed, in which VCD and CV were both successfully predicted using dielectric spectroscopy. Both univariate and multivariate data analysis approaches were evaluated for their potential to establish correlation between the in situ dielectric spectroscopy and offline measurements. Univariate analysis strategies are presented for optimal single frequency selection. Multivariate analysis, in the form of partial least squares (PLS) regression, produced significantly higher correlations between dielectric spectroscopy and offline VCD and CV data, as compared to univariate analysis. Specifically, by leveraging multivariate analysis of dielectric information from all 25 spectroscopic frequencies measured, PLS models performed significantly better than univariate models. This is particularly evident during cell death, where tracking VCD and CV have historically presented the greatest challenge. The results of this work demonstrate the potential of both single and multiple frequency dielectric spectroscopy measurements for enabling robust LVV process characterization, suggesting that broader application of in situ dielectric spectroscopy as a PAT tool in LVV processes can provide significantly improved process understanding. To the best of our knowledge, this is the first report of in situ dielectric spectroscopy with multivariate analysis to successfully predict VCD and CV in real time during live virus-based vaccine production.


Assuntos
Espectroscopia Dielétrica , Vacinas , Cricetinae , Animais , Sobrevivência Celular , Células CHO , Contagem de Células , Espectroscopia Dielétrica/métodos , Tecnologia
20.
Allergy ; 79(1): 142-152, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753955

RESUMO

BACKGROUND: Skin barrier dysfunction is associated with the development of atopic dermatitis (AD), however methods to assess skin barrier function are limited. We investigated the use of electrical impedance spectroscopy (EIS) to detect skin barrier dysfunction in children with AD of the CARE (Childhood AlleRgy, nutrition, and Environment) cohort. METHODS: EIS measurements taken at multiple time points from 4 months to 3-year-old children, who developed AD (n = 66) and those who did not (n = 49) were investigated. Using only the EIS measurement and the AD status, we developed a machine learning algorithm that produces a score (EIS/AD score) which reflects the probability that a given measurement is from a child with active AD. We investigated the diagnostic ability of this score and its association with clinical characteristics and age. RESULTS: Based on the EIS/AD score, the EIS algorithm was able to clearly discriminate between healthy skin and clinically unaffected skin of children with active AD (area under the curve 0.92, 95% CI 0.85-0.99). It was also able to detect a difference between healthy skin and AD skin when the child did not have active AD. There was no clear association between the EIS/AD score and the severity of AD or sensitisation to the tested allergens. The performance of the algorithm was not affected by age. CONCLUSIONS: This study shows that EIS can detect skin barrier dysfunction and differentiate skin of children with AD from healthy skin and suggests that EIS may have the ability to predict future AD development.


Assuntos
Dermatite Atópica , Hipersensibilidade , Humanos , Pré-Escolar , Dermatite Atópica/diagnóstico , Espectroscopia Dielétrica , Pele , Alérgenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA